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When describing a crystal structure in terms of the Wyckoff sites occupied, equivalent alternatives 
often arise because the choice of origin of coordinates is subject to arbitrariness remaining within the 
standard choice in International Tables for X-ray Crystallography. The problem is explained and simple 
tables which enable any crystal structure to be described in any of the alternative ways are presented. 
Reference is made to the analogous problem in the theory of lattice complexes. 

Introduction 

One of the neatest generally applicable descriptions of 
a crystal structure is to specify the space group and 
then the occupation of the sets of equivalent sites, 
denoted by their Wyckoff (1922) label. Specification of 
the actual coordinates of the atoms within the unit 
cell then becomes redundant since these may be found 
by reference to Vol. I of International Tables for X-ray 
Crystallography (Henry & Lonsdale, 1969) provided 
that, for sites with degrees of freedom, the necessary 
parameters have been specified. 

In this way the structure of caesium chloride is fully 
described by the space group Ok with the caesium ions 
occupying the (a) sites and the chloride ions occupying 
the (b) sites, or vice versa. Both (a) and (b) sites have 
On point symmetry and are entirely equivalent; indeed 
the structure may be regarded as the interpenetration 
of two equal simple cubic lattices respectively specified 
by the cations and anions. In the same way the (c) and 
(d) sites are mutually equivalent: occupation of a (c) site 
may equally well be redescribed by occupation of a 
(d) site. If, however, the structure of the ordered phase 
of the intermetallic compound AuCu3 is described in 
this way then the space group is Ok with the gold atoms 
on the (a) sites and the copper atoms on the (c) sites, 
but the only equivalent redescription of the structure 
is that in which the gold atoms occupy the (b) sites 
and the copper atoms the (d) sites. Indeed the structure 
in which (a) and (d), or equivalently (b) and (c), sites 
are occupied is quite different, in fact that of rhenium 
trioxide, ReOa. The reason for this restriction on the 
Wyckoff site description of a crystal structure is that 
in moving the (a) sites to the positions occupied by 
the (b) sites, which may be effected by an origin shift 
of :11 ~a the (c) sites necessarily undergo this origin k-'Z-Z~/, 

shift also and thus become (d) sites. 

Theory 

The general problem underlying the above illustration 
concerns the determination of all allowed origin shifts 
and the effect of each of these on all the Wyckoff site~ 

possible in a given space group. Two or more sets of 
sites will be said to be physically equivalent if 

(i) they have the same point-group symmetry; 
(ii) the orientations of the symmetry elements in the 

site groups with respect to the unit cell are the same: 
these have been elucidated by Boyle (1971); 

(iii) they cannot be interrelated by space inversion 
only, i.e. there are not enantiomorphous pairs of sites; 

(iv) the conditions limiting possible X-ray reflexions 
are the same; 

(v) the environment of symmetry elements is identi- 
cal. 

Conditions (i) to (iv) are easily recognized from 
Table 4.3 of Vol. I of International Tables for X-ray 
Crystallography (Henry & Lonsdale, 1969) and the 
tables of Boyle (1971); condition (v) is best tested by 
trial and error. The test consists of applying the origin 
shift that interconverts sets satisfying (i) to (iv) and 
ensuring that every other set is either unchanged or 
converted into another physically equivalent set in the 
space group. Thus in D~ 7 the sets of sites (a) and (b) 
satisfy (i) to (iv) but the origin shift (¼¼¼) which inter- 
converts them does not leave the unique set (c) invariant 
and hence these sites do not satisfy condition (v). It is 
relevant to add at this point that for a set with one or 
more degrees of freedom an origin shift may leave the 
set invariant, provided that the value of the arbitrary 
parameter is subjected to the appropriate linear trans- 
formation; the precise transformations will not be spe- 
cified in this paper but they can be deduced when 
necessary. In certain cases, e.g. D~h, an allowed origin 
shift causes interchange of the labels of the arbitrary 
parameters in the set containing two degrees of free- 
dom: this is irrelevant since the set is independent of 
the labelling of the parameters provided that these are 
given the appropriate numerical values. Occasionally, 
where origin shifts in perpendicular directions affect 
different sites, there is complete interchangeability of 
equivalent sites. Thus in D~ a shift (0½0) interchanges 
(a) and (b) only while the shift (½00) interchanges (c) 
and (d) only; the values of the arbitrary parameters in 
the unchanged sites are, however, affected. 

Of the 230 space groups, 159 allow an origin-depen.- 
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dent choice of Wyckoff-site description. However, since 
the Wyckoff labelling of the sites is independent of the 
setting in the monoclinic groups, the choice of origin 
or the use of rhombohedral or hexagonal axes, the 
Tables presented in this paper are applicable to any of 
these sta=dard variants given in International Tables. 

Lattice complexes 

A problem analogous to that discussed above may be 
posed in the theory of the description of a crystal 
structure in terms of lattice complexes. These were 
originally defined by Niggli (1919) as what is now 
known as a set of Wyckoff sites and it was recognized 
that lattice complexes were related on ascent and des- 
cent in symmetry within a given crystal system. Her- 
mann (1935) felt that a more useful definition would be 
to ascribe different sets of Wyckoff sites to the same 
lattice complex if they could 'be transformed into one 
another by any rotations or changes of scale whatever, 
provided that the corresponding crystal system and 
the direction of its axes is not altered thereby'. The 
advantage of this was that the lattice-complex descrip- 
tion was now invariant for different choices of the 
coordinate axes but Hermann did admit that a certain 
degree of abstraction had been incurred ('The defini- 
tion . . .  is not so directly related to the coordinate 
representation as that of Niggli, since the symbols 
giving the relationship of the cell of the lattice complex 
to that of the space group is not obvious'). The idea was 
that the sets of Wyckoff sites were now merely concrete 
representations of the abstract lattice complex. How- 
ever, Hermann's (1935) tables classified some enantio- 
morphous sets of sites as belonging to the same lattice 
complex (e.g. in T6), while others (e.g. in 08) belonged 
to different lattice complexes. Donnay, Hellner & Nig- 
gli (1966) proposed that enantiomorphous sets should 
belong to the same lattice complex but at the same time, 
following Hermann (1960), established a whole system 
of different superscripts to distinguish the different rep- 

resentations of a lattice complex which, as can be 
seen from Table 1 of Hellner (1965), was merely tant- 
amount to relabelling the Wyckoff sites in a compli- 
cated notation which sometimes gave information on 
ascent and descent in symmetry. Indeed, Hellner's 
(1965) paper shows the fundamental weakness of the 
description of a crystal structure by means of lattice 
complexes since in describing the structure of zinc 
blende (Space group T~; Zn on (a), S on (c) or Zn on 
(b), S on (d) or Zn on (c), S on (b) or Zn on (d) S on (a) 
the lattice complex description becomes F F "  or F ' F ' "  
or F ' F "  or F ' F ' " .  Although the last two might more 
logically be written F " F '  and F ' " F ' ,  there is still no 
explanation of the restriction on the possible combina- 
tions of F-type lattice complexes. Presumably the con- 
clusion was reached by translating the Wyckoff-site 
description. The four alternatives can be read off im- 
mediately from Table 7 below. Indeed since Tables 1-7 
specify precisely the permutability of the Wyckoff sites 
there now seems to be little value in retaining the con- 
cept of a lattice complex in view of these defects. 

The TaMes 

Tables 1-7 contain explicity the allowed permutations 
of the Wyckoff sites for the space groups (classified 
according to crystal systems). The allowed permuta- 
tions are specified by the rows of the Tables and the 

Table 1. Correlation o f  equivalent W y c k o f f  site 
descriptions fo r  the triclinic space groups 

a b c 
b a g 
C g a 

s ;  d f e 
e h d 
f d h  
g c b 
h e f  

C~: - No 

d e f  g h  
f h d c  e 
e d h b f  
a c b h g 
c a g f b 
b g a e c 
h f e a d 
g b c d a 

alternatives. 

Table 2. Correlation o f  equivalent W y c k o f f  site descriptions fo r  the 

a b  
Cl, ,Cl  I b a  [ C~, 

a b c d e f g h  
C 3 b a d c e f  g h  

2h c d a b f  e h g  
d c b a f e h g  

a b c d  
C~, C z CS,~, b a d c 

2h, c d a b 

d c b a  

a b e d e f  
b a f  e d c  
c f  a g h b  
d e g a b h  
e d h b a g  
f c b h g a  
g h d c f  e 
h g e f  c d  

a 

Clh b 
C 

d 

g h i j  
h g i j  
d e k l  
c f j i  
f c j i  
e d k l  
a b l  k 
b a l k  

b c d e  
a d c f  
d a b e  
c b a f  

a b e d  
C% b a d c 

C~n, C~n, C1n, C~:- No alternatives. 

monoclinic space groups 

k l I1Z 1l 
k l  n m  
i j m n  
l k m n  
I k n m  
i j n m  
j i mn 
j i n m  
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T a b l e  3. Correlat ion o f  equivalent  

D31, 

c~ 
a b  
b a  
c d  
d c  

C~ 4, Ds [ a 
2h b 

l a b c  
b a e  
e e a  

D1 d f  g 
e e b  
f d h  

' g h d  
i h g f  

D 2 D lo Dta D 22 
2, 2h, 2h, 2h 

a b c d e  
D72 b a d c  

c d a b  
d c b a  

a b e d  
b a d c  
c d a b  

D t d c b a  
21, e f g h  

f e h g  
g h e f  
h g f e  

f 
e f  
j i  
j i  

e f  
f e  
g h  
h g  
a b  
b a  
c d  
d c  

W y c k o f f  site descript ions f o r  the 

D 2 2h 

O'~ 

c d e f g h  
d c f  e g h  
a b e f h g  
b a f  e h g  

b 
a 

d 
f 
g 
a 

h 
b 
e 
e 

a 
a 
b 
b 

g 
g 
h 
h 

g 
h 
e 

f 
C 
d 
a 
b 

a b c  
C~o b a d 

c d a  
d c b  

d e  I D2° ] a b  e d e f  e 
e d  2n b a d c f  

e f  g h i  j k l  m n o p q r  s 
c d h g i j  k l  o p m n r  q t  
b h d f  k l  i j m n  o p  s t q 
h b c e j  i l k n m p o q r  s 
a g f  d k l  i j  o p m n t  s r  
g a e c j  i l k p o n m r  q t  
f e a b l  k j  i n m p o s  t q 
d c b a l  k j  i p o n m t  s r  

b c d  a b c d e  
b d c  D~2 b a d c e  
a c d  e d a b f  
a d c  d c b a f  

h i j  
h i  j D~ 
g f e  
g f e  

h i  j k l  m n o p q r  s t u v w x y z  
g i j  k l  o p m n s  t q r  v u w x y z  
f j  i l k n m p o q r  s t u v  w x z y  
e j  i l k p o n m s  t q r  v u w x z y  
d k l  i j m n  o p  r q t s u v x w y  z 
e k l  i j o p  m n  t s r q v u x w y  z 
b l k j  i n m p  o r q t s u v x w z  y 
a l  k j  i p o n m t  s r q v u x w z y  

a b c d e f  g h i  j k l  
a b c d f  e g h i  j k l  
b a d c  e f  g h j  i l k 
b a d e f  e g h j  i l k 
c d a b  e f  h g j  i k l  
c d a b f  e h g j  i k l  
d c b a e f h g i j  1 k 
d c b a f  e h g i j  l k 

a b  c d e f  g h  i j k l  m n  o p  
b a d c  h g f  e j  i 1 k n  m p  o 
c d a  b g h  e f  j i k l  o p  m n  
d c b a f  e h g i j  l k p o n m  

a b c d e f g h i j  k l  
b a d c e f  g h i j  l k 
c d a  b f  e h g j  i l k 
d c  b a f  e h g j  i k l  

a b e d e f  g h  
b a d c e f h g  
c d a b f  e g h  
d c b a f  e h g  

D 2 5  
2h 

D19 
2h 

a b c d e f  h i j k 
b a d c f  e i h k j  

a b c d e f  g h i  j 
b a d c f  e h g i  j 
c d a b f  e g h j  i 
d c  b a e f  h g j  i 

or thorhombic  space groups  

d 
e 
b 
a 

i: I j i  

t 
S 
r 
t 
q 
S 
r 
q 

f g h i j  
f g h j  i 
e h g j i  
e h g i j  

a b  c d e f  g h i  j 
b a d e  e f  h g j  i 
c d a b f  e h g i j  
d e  b a f  e g h j  i 

D 7 12 
2h~ D 2 h  

a b e d  
DSzh b a d c 

c d a b  
d c b a  

a b c d e f g h  
b a d c e f g h  
c d a b f  e h g  
d c b a f  e h g  

24 D2s  [ a 
D2h, 2n I b 

a b c d e f  
b a d c e f  
c d a b f  e 
d c b a f  e 

e f g h i j  
f e g h j  i 
e f h g i j  
f e h g j  i 

i j  k l p q  
i j  l k p q  
j i I k q p  
j i k l  q p  

 caq 
a d c  

D26 I a b c d h i  I 
2h b a d c i  h 

I3f~1$C2°2t I [ 2v, ,~2, ,  ,~2o, ,~2o, ,~2v, 2v, ,~2v, ,~2v, 2v, C20 a b 
D 3 D 6 D 11 D TM D is D 16 D 17 D TM D 23 b a 

2~ 2h~ 2h~ 2h~ 2h9 2h~ 2h~ 2h~ 2h 

5 7 9 t2 C 1 6  x7 xa x9 22 s 9 D 2 7 .  N o  alternatives.  C2~, C2~, C2o, C2v, 2~, C2v, C2u, C2v, C2v, D~, D2, D2, 2 n . -  
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Table 4. Correlation o f  equivalent W y c k o f f  site descriptions f o r  the trigonal space groups 

I a b  c 
C~, C 1 C 3 b c a 3v~ 3v 

c a b  

D~S~ l a b e l  e 3, b a f  

o13 

a b c d e f  g h i  j k 
b a d c f  e g h i  k j  
c d e f  a b h i g j  k 
d c f  e b a h i g k j  
e f  a b c d i  g h j  k 
f e b a d c i  g h k j  

o33 p [ I , 
p 031o e,e h I Did d c 3a b a f h g b a e d g f 

C z C a C 4 C 2 C~v, C 5 C 6 0 4 D~a: No alternatives. 3~ 3~ 3~ 3v~ 3v~ 3v~ 3d~ - -  

Table 5. Correlation o f  equivalent 

a b c  
S~ b a d  

c d a  
d c b  

W y c k o f f  site descriptions f o r  the tetragonal space groups 

d e f  a b c d e f  
c e f  S~ b a d c e f  
b f  e c d b a f  e 
a f  e d c a b f  e 

a b c d e  
b a d c f  
c d a b e  
d c b a f  

f g  
e g  
f h  
e h  

h j k  
h k j  
g j k  
g k j  

a b c d e f  g h  
C~h b a d c f  h e  

a b d e  [ 
C~1,, C~o b a e d 

C ~ h ,  6 D 9 19 C4l~ 2d~ O4h 

a b c d e f g  
b a d c f  e h  
c d a b f  e g  
d c b a e f h  

D 1 2d 

D2 l a b c d e f  
~a c d a b f  

D S [  a b c d f g  ] 
2d b a d e g f  

a b c d  
b a d c  

i j k l  
j i l k  
k l i j  
l k j i  

h i j k  
j g h l k  

C ~o, D~, D 6 I 

a b c d  
D 5 b a d c  

za c d a b  
d c b a  

D~d, D 7 ] a 
2d I b 

D~O [ a b c d e f  g h ] 
d c b a h g f e  

a b  
b a  

e f  
f e  
f e  
e f  

b c 
a d  

D~ta, 

;Ie 
h i j k  
h i k j  
i h k ]  
i h j k  

d g h  
c h g  

b a g f  

oI 
a b c d e f  g h j  k l  mn o 
b a d c f  e g h k j  n o l m  
c d a  b e f  h g j  k o  n m l  
d c  b a f  e h g  k j  m l  o n  

I a b c d e f  g h j  k l  m I 
D~,D9h b a d c f h g m l  k j  

a b h i  [ 
D9 b a i  h 

D~h 
a b c d e  
b a d c f  
c d a b e  
d c b a f  

f g h j  k 1 mn o p  q s t 
e g h k j  m l  o n q p s  t 
f h g j  k n  o l mp q t s 
e h g k j  o n m l  q p t  s 

a b c d g h k l  I 
DZ4h C d a b  h g l k l a b c d e f i j  k' I 

D],, b a d c  f j i l k 

I a b i  j ] 
D~h, DI~ b a j i 

a b c d g  h i j [ 
DSh b a d c h g j i 

oh  a b d e g h  I 
b a e d h g  D~ ° 

a b c d g h  i j l m 
a b c d g  h j  i l m 
c d a  b h g  i j m l  
c d a b  h g j  i m l  

D~, 2, 

D~ 

a b e f e i  j k l  
b a r  j i l k  

c d g h  I 
d c h g  

cL c~,, ~ l a b  I C4,,, Ca4o, CS4o, C~o, D 3zd, D~, D~.~, 0 3, 074, D~ °, .06,. D~, s, b a 

C~, C~, C~, C~, C~o, C~, C6~., C9~, C~°o, C~v, ClZv, D~, D~, D~h, D~],, D~, D~,~, D ~ : -  No alternatives. 
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Table 6. Correlation of equivalent Wyckoff site descriptions for the hexagonal space groups 

D~j, 

n~ 

C~ 

a b c d e f  g h i  j k 
b a d c f  e g h i  k j  
c d e f  a b h i g j  k 
d c f  e b a h i  g k j  
e f  a b c d i  g h j  k 
f e b a d c  i g h k j  

a b c d e f  g h i  I 
c d e f  a b h i  g 
e f  a b c d i  g h  

a b Cddf  g j  k l  m I 
b a e g f  k j  ml  

l a b c d g h i j  
D~,D~ b a d c h g j i 

D 1 
3h 

a b c d e f  g h  i l m 
b a d c f  e g h  i ml  
c d e f  a b h i g l  m 
d e f  e b a h i g m l  
e f  a b  c d i  g h  1 m 
f e b a d c i  g h m l  

I a b c d f g j  k [ 
D 33~, C~h b a d c g f  k j  I 

nl,, c~,, z)~', z)t. d c 

[ a b c d f g j  k t  m p q  [ 
D~, b a d c g f k j m l q p 

C~, C], Ca, C~, C], C6 6, C~v, C]v, C]o, C~., D6 z, D6 3, D2n, D~h: - No alternatives. 

Table 7. Correlation of equivalent Wyckoff site descriptions for the cubic space groups 
a b c d f g  

T1] a b c d f  g h i  [ b a d c f  g 
b a d c  i h g f  TZ'T] c d b  a g f  

d c a b g f  

a b c d f  g 
T~, T~ b a d c g f 

] c d g h  [ T~] a b e  d e f g h j  ~ I r~[ b ~  I 
T~ d c  h g  b a d c  h g f  e k j  c b 

a b  Tab, T 6, T 7, 06, 07 ] b a ] TZ, 04 , 07~ ] ~ b a Cddc ] TZ I de ed ] 

01 [ a b c d e  fe ' J [ 02 ] b c ere i J k 1 [ Oa] a b g h [ 
b a d c f  j i c b f  j i 1 k b a h g  

[ a b c  d e  f i j k l [ o][ c d g  h I 04[ b c  i j 0:[  a b  h i  l 
Oan b a d c f  j i 1 k d c  h g  c b j  i b a i h [ 

T 3, T 4, T 5, T,], T 6 , 05, 0 s, 02, 06 , On 8 , 09 , O~ ° : - No alternatives. 

correlations by the columns. In the first row and first 
column the relevant sites appear in alphabetical order. 
Sites which are invariant to all allowed origin shifts 
are omitted. Space groups of a given crystal system 
having the same correlation tables have been collected 
together to save space; no other similarity between the 
nature of the sites or the space groups is implied as 
Wyckoff's system of labelling is essentially an arbitrary 
cataloguing of the sets of special positions. As an illus- 
trative example the spinel structure [O 7, Mg on (a), 
A1 on (d), O on (e)] may be considered. According to 
Table 7, when (a) ~ (b), (d) ~ (c) and (e) is unchanged 
since it is not included. However the (e) sites do have 
one degree of freedom and inspection of International 
Tables (Henry & Lonsdale 1969) p. 340 shows that the 
new parameter x' is related to the original one x by the 
equation: x' = x -  ½. The alternative description is there- 
fore O~ v, Mg on (b), AI on (c), O on (e) with x ' =  x - ½ .  

We should like to thank the United Kingdom Science 
Research Council for the award of a Research Student- 
ship to JEL. 
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